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Evidence of Convective Instability in

Congested Traffic Flow:

A Systematic Empirical and Theoretical

Investigation

Martin Treiber a,∗, Arne Kesting a

aTechnische Universität Dresden, Institute for Transport & Economics,

Würzburger Str. 35, 01062 Dresden, Germany

Abstract

An extended open system such as traffic flow is said to be convectively unstable
if perturbations of the stationary state grow but propagate in only one direction,
so they eventually leave the system. By means of data analysis, simulations, and
analytical calculations, we give evidence that this concept is relevant for instabili-
ties of congested traffic flow. We analyze detector data from several hundred traffic
jams and propose estimates for the linear growth rate, the wavelength, the propa-
gation velocity, and the severity of the associated bottleneck that can be evaluated
semi-automatically. Scatter plots of these quantities reveal systematic dependencies.
On the theoretical side, we derive, for a wide class of microscopic and macroscopic
traffic models, analytical criteria for convective and absolute linear instabilities.
Based on the relative positions of the stability limits in the fundamental diagram,
we divide these models into five stability classes which uniquely determine the set
of possible elementary spatiotemporal patterns in open systems with a bottleneck.
Only two classes, both dominated by convective instabilities, are compatible wiqth
observations. By means of approximate solutions of convectively unstable systems
with sustained localized noise, we show that the observed spatiotemporal phenom-
ena can also be described analytically. The parameters of the analytical expressions
can be inferred from observations, and also (analytically) derived from the model
equations.
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1 Introduction

Traffic flow dynamics and congestion phenomena have been investigated for
decades (Reuschel, 1950; Pipes, 1953) (see also the reviews (Helbing, 2001;
Hoogendoorn and Bovy, 2001)). Observations of instabilities date back several
decades as well (Treiterer and Myers, 1974), and there is an ongoing flow of
new empirical results (Kerner and Rehborn, 1996; Zielke et al., 2008; Schönhof
and Helbing, 2007; Treiber and Kesting, 2010a). Some fundamental questions,
however, are not yet settled. Can the multitude of observed spatiotemporal
patterns of congested traffic be decomposed into precisely defined elementary
patterns (Kerner and Rehborn, 1996; Schönhof and Helbing, 2009; Treiber
et al., 2010a)? If so, into how many patterns, and what are their defining
properties (Schönhof and Helbing, 2007; Kerner, 2002)? What is the relation
between traffic patterns and (dynamic) traffic phases (Treiber et al., 2010a)?
Particularly, are there two or three phases (Wagner and Nagel, 2008)?

All this is related to oscillations in extended regions of congested traffic, i.e.,
congested traffic spreading over several detector locations. Such oscillations
have been observed frequently, e.g., in Germany, Holland, England, and the
USA (Zielke et al., 2008; Bertini and Leal, 2005; Ahn and Cassidy, 2007;
Helbing et al., 2009; Wilson, 2008; Treiber et al., 2010b). Their common prop-
erties have been summarized by the following qualitative facts (Treiber et al.,
2010a).

(1) Congestion patterns are typically caused by bottlenecks. The downstream
front is either stationary at a bottleneck, or moves at a constant velocity
ccong. Analyzing about 400 congestion patterns on the German freeways
A5-North and A5-South did not bring conclusive evidence of a single
breakdown without a bottleneck (Schönhof and Helbing, 2007).

(2) Most extended traffic patterns on freeways exhibit distinct internal oscil-
lations (Daganzo, 2002a; Mauch and Cassidy, 2002). Only minor or severe
bottlenecks may cause nearly homogeneous congested traffic where possi-
ble oscillations cannot be distinguished unambiguously from noise (Treiber
et al., 2010a).

(3) The oscillations propagate in upstream direction at the characteristic
velocity ccong of the moving downstream fronts (cf. Fact 1) (Li et al.,
2010; Orosz et al., 2010; Windover and Cassidy, 2001). This velocity
depends weakly on the country and traffic composition (Zielke et al.,
2008; Bertini and Leal, 2005; Ahn and Cassidy, 2007), but not on the
type of congestion.
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(4) The amplitude of the oscillations increases while propagating upstream (Zielke
et al., 2008). As a consequence, one observes stationary traffic near the
bottleneck and growing stop-and-go waves further upstream.

(5) If oscillations are present, their frequency increases with the severity of
the bottleneck.

We emphasize that, for the sake of simplicity, we do not consider details of the
bottleneck which may be caused by onramps, offramps, gradients, road works,
accidents, or combinations thereof. Nor do we consider the immediate region
of a bottleneck itself where the dynamics generally depends on the details
of the activation mechanism. For example, on US freeways with many lanes,
lane separation effects such as the “rabbits and slugs” phenomenon (Daganzo,
2002b) may be relevant in the vicinity of the bottleneck. In contrast, in our
data base, we always have observed nearly perfect speed synchronization across
all lanes.

Of course, any “theory” must be consistent with the above observations. How-
ever, these observations do not settle unambiguously some of the most intrigu-
ing questions about the nature of traffic instabilities: Are they of a nonlinear
type requiring a finite perturbation for activation, or are the observations
consistent with linear instabilities? Can insights into stability properties of
homogeneous systems (or closed ring roads) be transferred to real open sys-
tems (Helbing et al., 1999, 2009; Treiber et al., 2010a)? Can the above ob-
servations be “explained” quantitatively and analytically in terms of the con-
vective instability? These questions are clearly fundamental since instabilities
are the main building block for dynamic traffic phases and spatiotemporal
patterns (Wagner and Nagel, 2008; Treiber et al., 2010a).

In this paper we investigate the problem from two perspectives. On the empir-
ical side, we analyze detector data of several hundred traffic jams and quan-
tify the above qualitative facts with estimates that can be evaluated semi-
automatically. The main part of the paper is dedicated to a theoretical anal-
ysis of these results. After providing analytic criteria for the thresholds of
absolute and convective linear instabilities for a wide spectrum of microscopic
and macroscopic traffic flow models, we divide the models into five classes
which uniquely determine the set of observable spatiotemporal patterns in
real systems. Both simulations and analytical solutions show that only two of
them are consistent with observations. Our main result is that the largely ne-
glected concept of convective instability (Huerre and Monkewitz, 1990) which
only very recently has attracted more attention in the traffic flow commu-
nity (Ward and Wilson, 2011; Wilson and Ward, 2011) has a high explanative
power in describing the observed spatiotemporal dynamics of extended traffic
jams.

The paper is structured as follows: Section 2 presents a scheme to extract
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quantitative aspects of the spatiotemporal evolution of congested traffic pat-
terns from cross-sectional data. In order to provide input for the theory to
be developed, the scheme is applied to a database containing several hundred
instances of jams. Section 3 gives analytical criteria for limits of absolute and
convective string instability that are applicable to a wide range of microscopic
and macroscopic traffic models. Moreover, the relative locations of the stabil-
ity limits are connected to the observed patterns by a newly formulated “class
diagram” in parameter space. As an example, the full parameter space of the
Intelligent Driver Model (Treiber et al., 2000) is explored. Section 4 gives
approximate analytic solutions to the equations of the considered models for
realistic congested situations, i.e., open systems with local sustained noise that
may represent lane changes at bottlenecks. The implications of these results
are discussed in Sec. 5.

2 Extracting quantitative properties of wave propagation from traf-

fic data

In this section, we propose quantitative estimates for the wavelength, propa-
gation velocity and growth rate of oscillations in congested traffic. Since these
quantities depend on the severity of the bottleneck, we give data-driven esti-
mates for the “bottleneck strength” as well. Here, we will only give a summary;
details are published elsewhere (Treiber and Kesting, 2010a).

2.1 The proposed scheme

We assume that aggregated data for the flow Q and speed V (arithmetic
averages) are available from several consecutive detector cross sections i at
locations xi, counted in the direction of traffic flow. Specifically, Qit denotes
the lane-averaged flow for cross section i during the t-th time interval, and Vit

denotes the corresponding speed.

In order to get valid results, it is crucial that the spatiotemporal area in
which the data are evaluated is restricted to the region of an extended jam.
Furthermore, since most of the estimates are based on cross correlations, only
time series over compatible time windows can be used. Together with the
Qualitative Facts 1 and 3 (Sec. 1), this leads to the two parallelogram-shaped
regions depicted in Fig. 1(a). In this figure, deviations from the average speed
(horizontal baselines). are drawn as oscillating curves. The detector spacings
are proportional to the spacings of the baselines. Figure 1(b) visualizes the
spatiotemporal dynamics using a dedicated reconstruction method (Treiber
et al., 2010b). This shows more explicitely that the two papallelogram-shaped
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Fig. 1. (a) Speed time series of an extended jam. (b) Visualization of the spatiotem-
poral dynamics.

regions belong to congestions with different characteristics which justifies to
investigate them separately.

The parallelogram-shaped regions can be determined semi-automatically as
follows (for details we refer to Ref. (Treiber and Kesting, 2010a)): The down-
stream and upstream edges of the parallelogram are given, respectively, by
the detector location nearest to the bottleneck, and by the location where
the waves begin to saturate. The other two edges are parallel to the direction
defined by the propagation velocity ∆x/∆t = ccong of perturbations in con-
gested traffic. Finally, the vertices are defined such that the parallelogram has
a maximum area subject to the condition that there is no free traffic anywhere
inside. As can be seen in Fig. 1, this may lead to several parallelogram-shaped
regions adjacent to each other.

For practical purposes, each parallelogram must be of sufficient size such that
the parallelogram includes at least three cross sections, and each cross section
records at least three oscillations. Furthermore, for the sake of simplicity, we
restrict ourselves to congestions that do not spread over multiple bottlenecks.
When propagating over additional bottlenecks, new phenomena may occur
such as oscillations with decreasing rather than increasing amplitude. These
phenomena are outside the scope of the present paper and possible may be
explained otherwise (Treiber et al., 2010a).

One may wonder if these stringent filtering criteria leave enough samples to
represent the full spectrum of the oscillation patterns. This is essentially en-
sured by the qualitative facts for most instances of extensive congestions, i.e.,
congested traffic covers a spatial range which is significantly larger than the
bottleneck region and a time period which is significantly larger than the
period of the oscillations. Such patterns include oscillatory congested traffic
(OCT) with clearly visible oscillations as in Fig. 1, and essentially stationary
patterns (homogeneous congested traffic, HCT) where possible oscillations
cannot be distinguished from noise (Treiber et al., 2010a). They also include
a part of congested patterns emitting isolated stop-and-go waves (triggered
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stop-and go waves, TSG). While, due to their inherently nonlinear nature, the
TSG waves itself are not included, the filtering criteria capture the region of
smaller oscillations near the bottleneck. As already observed in Ref. (Kerner
and Rehborn, 1996), such a “pinch region” is part of most TSG patterns.

The filtering criteria do exclude localized congestions which can be observed
either in the form of a single standing wave at a bottleneck (pinned localized
cluster, PLC), or as isolated stop-and-go waves (moving localized clusters,
MLC), similarly to the stop-and-go waves of the TSG state. In summary,
the filter criteria retain nearly all instances where wavelengths, propagation
velocities, and growth rates are defined in a meaningful way. Once suitable
instances are selected from the database, we determine, for each sample, the
characteristic quantities as follows.

The propagation velocity c is determined by maximizing the cross correlations,

c = arg max
c′

∑

i

∑

j>i

Corr
[

Vi(t), Vj

(

t+
xi − xj

c′

)]

. (1)

In contrast to other investigations using the cross-correlation method (Mika
et al., 1969; Coifman and Wang, 2005; Zielke et al., 2008), we take into account
all pairs of time series in the relevant region in order to make the measure
more robust and to tackle discretization errors (for details, see Ref. (Treiber
and Kesting, 2010a)). Pairings of time series with distinct oscillations are
automatically weighted more than pairings where one or both of the time series
essentially shows noise. The continuous-in-time function Vi(t) is defined by a
piecewise linear interpolation of the detector time series Vit. The qualitative
facts imply that c lies in a very small range around ccong which is confirmed
by Fig. 3(b). This makes it possible to define the spatiotemporal region using
the a-priori estimate ccong without danger of circular reasoning.

The average wavelength L is determined via the average period τ of the os-
cillations by the relation L = |c|τ . The period, in turn, is given by the first
nontrivial maximum of the autocorrelation function (AKF),

τ = arg max
τ ′>0

Corr [V1(t), V1(t+ τ ′)] . (2)

Since waves may merge during their propagation, the period is not unique
and therefore has to be estimated at a defined development stage for which
we chose the limit of saturation, i.e., the time series at the upstream edge
of the parallelogram-shaped relevant region. Figure 2(a) shows the AKF for
several detectors for the situation corresponding to Fig. 1(a). All AKF show a
first maximum between 6 and 7min. However, for the most upstream detector
at 473 km, the second maximum is higher than the first maximum indicating
the beginning of merges (cf. Fig. 1). Consequently, this detector is outside the
parallelogram and the detector at location 474 km is used to evaluate Eq. (2).
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Fig. 2. (a) Autocorrelation function, and (b) spectrum of the speed detector data
shown in Fig. 1. The input is restricted to the parallelogram-shaped region shown
in this figure.

The same information can also be obtained by a spectral analysis: Figure 2(b)
shows the predominant linear mode at a frequency of 9.5 h−1 (corresponding
to the first nontrivial maximum of the AKF). Furthermore, a nonlinear mode
with a significantly lower frequency can be seen for some of the detectors,
corresponding to the second nontrivial maximum of the AKF.

A third property, the growth rate, has (to our knowledge) not yet measured
systematically. In a first step, the temporal growth rate σ is expressed by the
spatial growth rate σ̃ via σ = cσ̃. The spatial growth rate, in turn, is given by
the slope of the linear regression of the logarithm of the amplitude,

σ̃ =

∑

i xi ln |Ai| − nx ln |Ai|
∑

i x
2
i − nx2

. (3)

The amplitude Ai of the oscillations at the n detector locations xi is ap-
proximated by the standard deviation of the speed time series Vit inside the
parallelogram. To minimize the risk of biased results, the linear trend is re-
moved from the time series before application of Eq. (3). Nevertheless, σ̃ is
only a rough approximation of the true spatial growth rate. Particularly, σ̃ is
influenced by non-collective fluctuations caused by random noise and driver-
vehicle heterogeneity as well as by saturation effects. Moreover, the standard
deviation gives a strongly biased result if the time series contains periods of
free traffic (which should be excluded by the filtering criteria). All these effects
systematically decrease the estimated growth rate but do not invalidate the
overall picture if they are taken into account when evaluating the simulations
as well. Notice that, in general, σ̃ is negative, and σ is positive.

According to the qualitative facts mentioned in the Introduction (Sec. 1), the
characteristic quantities L, τ , σ, and σ̃ depend on the severity of the bottle-
neck. So it is necessary to quantify this property as well. Theoretically, the
bottleneck strength is defined by a local drop of the capacity that is available
for the mainroad traffic (Schönhof and Helbing, 2007). However, this quan-
tity is problematic to measure, particularly, if the bottleneck includes merg-
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ing/diverging traffic (e.g., junctions, intersections, or lane closings). Instead,
we use as correlated measurable quantity the arithmetic speed average over
the downstream edge of the parallelogram (cross section n),

V = V n. (4)

According to Qualitative Fact 4, the oscillations are minimal at this location
making V a well-defined quantity.

2.2 Application to freeway data

In order to provide input for the theoretical analysis of the next sections,
the characteristic quantities of oscillations have been calculated for all ap-
plicable instances of traffic congestions observed on a section of the Ger-
man freeway A5-South near Frankfurt for April and May 2001. Images of
the corresponding spatiotemporal speed fields can be viewed at the web-
site www.traffic-states.com. An example is shown in the left parallelo-
gram of Fig. 1. This specific instance of a jam has the characteristic quan-
tities ccong ≈ −16 km/h, τ ≈ 6min, Lwave ≈ 1.6 km, σ̃ ≈ −0.4 km−1, and
σ ≈ 6.4 h−1.

Figure 3 displays the result in form of scatter plots of the dynamic properties
as a function of the bottleneck strength which is characterized by the speed
near the bottleneck. Each data point corresponds to one parallelogram-shaped
region of congested traffic behind one of the junction or intersection bottle-
necks shown in the schematics of the site. For comparison, some data points
of the propagation velocity and growth rate of perturbations in free traffic
(sampled from spatiotemporal areas outside the parallelogram-shaped regions
of congested traffic) have been added. Figure 3(a) confirms the qualitative
observation that the wavelength decreases with the severity of the bottleneck,
i.e., with decreasing speed at the bottleneck. However, the wavelength does not
drop below 1 km. Plot 3(b) confirms that the propagation velocity of pertur-
bations in congested traffic is essentially independent of the average vehicle
speed (Li et al., 2010; Orosz et al., 2010; Windover and Cassidy, 2001), in
contrast to the situation in noncongested traffic. Most instructive is Fig. 3(c):
In agreement with the qualitative observations, the growth rate is generally
positive, apart for very low average velocities V corresponding to extended
congestions behind severe bottlenecks. Such congestions typically are a conse-
quence of accident-caused lane closures. Remarkably, it is not confirmed that
congested traffic flow behind minor bottlenecks (V > 50 km/h) may be stable
as well. However, since this result is based on only four data points, further
investigations are necessary.

To conclude this section, we emphasize that the investigated instances of con-
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Fig. 3. Characteristic properties of the propagation of perturbations as a function
of the speed near the bottleneck.

gested traffic do not spread over multiple bottlenecks. However, they may be
caused by different bottlenecks, specifically, by the Junction Friedberg and
the intersections I1 and I2, cf. Fig. 3(d). Nevertheless, the data points collapse
onto each other within statistical uncertainty. This is strong evidence for our
approach to characterize the global dynamical effect of a bottleneck by a single
property, the bottleneck strength measured in terms of the speed immediately
upstream of it.

3 Stability analysis

In this section, we start with the main theoretical investigation by giving
a systematic stability analysis, including an analytic criterion for convective
instability that can be evaluated for a wide range of microscopic and macro-
scopic traffic models.
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3.1 Definitions of relevant stability types

For extended open systems with external noise, the analysis is conception-
ally much more demanding than for systems with a few degrees of freedom,
even on a linear level (Wilson, 2008; Huerre and Monkewitz, 1990). In par-
ticular, one has to distinguish between local and string (or flow) instability.
Local instability implies that sustained oscillations already arise when follow-
ing a single vehicle. It can be shown that, for all sensible microscopic models,
this type of instability is absent provided that the reaction time is sufficiently
low (Orosz and Stépán, 2006; Treiber and Kesting, 2010b). Much more rele-
vant and widespread is the string instability of a platoon of vehicles following
each other (Fig. 4), which is also equivalent to the flow instability of macro-
scopic models. This collective phenomenon may be present even if each driver
is perfectly able to follow a single leader with damped or even without oscil-
lations (Kesting and Treiber, 2008).

In extended open systems, the string instability can be subdivided into convective
and absolute instabilities. In the presence of a convective instability depicted
in Fig. 4(a), small oscillations grow but the range of growing amplitudes prop-
agates in only one direction. Consequently, in the absence of sustained noise,
the oscillations will eventually leave the road section under consideration. In
the traffic flow context, the propagation direction is generally opposite to
the driving direction (type “up”, Fig. 5(a)), but a linear propagation purely
in driving direction is possible as well, at least theoretically (type “down”,
Fig. 5(b)). However, after some time, nonlinearities will destroy the convec-
tive nature of the type “down” (Fig. 5(b) after about t ≈ 20min), but not
of the type “up”. Therefore, convective instability of the “down” type is not
relevant for the observed traffic patterns. (In fact, it is never observed in real-
ity.) When the string instability is absolute (Fig. 4(b)), the range of growing
perturbations propagates in both directions. Therefore, a single localized per-
turbation eventually leads to sustained oscillations in the whole region. Notice
that, for obvious reasons, the distinction between convective and absolute in-
stability does not exist in closed systems such as ring roads (Sugiyama et al.,
2008). Furthermore, all the instabilities discussed above may be linear (can be
triggered by an infinitesimal perturbation), or nonlinear (a finite perturbation
is necessary). In the latter case, one also speaks of metastability.

Mathematically, the different stability concepts can be defined in terms of the
response U(x, t) to a localized initial perturbation of homogeneous traffic flow
of density ρe in an infinite system (Fig. 5),

U(x, 0) =











ǫ if |x| < 1
2ρe

,

0 otherwise,
(5)
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Fig. 4. Visualization of (a) convective upstream instability, and (b) absolute insta-
bility by vehicle trajectories in a space-time plot. Shown are IDM simulations with
parameters as in Fig. 6, but the acceleration parameter a changed to 1.1m/s2 and
0.9m/s2 for the plots (a) and (b), respectively. Shown are the trajectories of every
20th vehicle.

where ǫ > 0 and U(x, 0) denotes the initial speed perturbation. The right-hand
side of Eq. (5) is defined such that, microscopically, the perturbation corre-
sponds to an instantaneous speed change of a single vehicle (the vehicle nearest
to the location x = 0) by the amount of ǫ. This follows from the fact that (i)
the perturbation integrated over all vehicles gives

∫

U(x, t)ρ(x, t) dx = ǫ, and
(ii) the perturbation is nonzero only in a road section of length ∆x = 1/ρe
corresponding to the space attributed to one vehicle. Traffic flow is linearly
string unstable if

lim
t→∞

max
x

U(x, t) > 0 for any ǫ > 0, (6)

and nonlinearly string unstable (metastable) if a finite ǫnl > 0 exists such that

lim
t→∞

max
x

U(x, t) =











U0 > 0 if ǫ > ǫnl,

0 otherwise.
(7)

Furthermore, traffic flow is convectively unstable if it is linearly unstable and
if, additionally,

lim
t→∞

U(0, t) = 0. (8)

This is illustrated by the simulated trajectories of Fig. 4 showing the response
to a localized and instantaneous perturbation at t = 0 near x = 0. In the left
graphics showing the case of (upstream-propagating) convective instability, the
cone-shaped region of oscillations does not include the dash-dotted location of
the initial perturbation (U(0, t) = 0 after some time). In contrast, in Fig. 4(b)
displaying absolute string instability, the perturbations eventually propagate
everywhere such that U(0, t) does not revert to zero after some time.

In analogy to definition (7), the latter condition can also be generalized on a
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Fig. 5. Speed response functions for the initial localized perturbation (5). Shown
are IDM simulations of (a) convective instability propagating upstream, (b) linear
convective instability propagating downstream which is destroyed by nonlinearities,
and of (c) the limit between convective and absolute instability.

nonlinear level (“convective metastability”). Notice that the above definitions
are formulated in terms of directly observable quantities and explicitly include
the effects of nonlinearities. For example, the response shown in Fig. 5(b) cor-
responds to a (downstream-propagating) convective instability in the linear
regime, but does not satisfy the general condition (8). In contrast, both the
existence and the threshold of upstream-propagating convective instabilities
(Fig. 5((a) and (c), respectively), are not altered by nonlinearities and there-
fore can be determined by a linear analysis.

The above definitions take into account nonlinearities at two stages: Nonlin-
earities at the initial perturbation (giving rise to metastability) are defined
by ǫnl > 0 while nonlinearities at later stages (possibly destroying the ini-
tial convective nature of the perturbation) are described by the response field
U(x, t).

3.2 String instability in traffic flow models

We now give analytical criteria for a wide class of car-following and macro-
scopic models. The considered car-following models are formulated in continu-
ous time by dynamical equations for the speed vα(t) of each vehicle α (counted
against the direction of the traffic flow), and for its (bumper-to-bumper) gap
sα(t) to the leading vehicle α−1 = l. We consider models of the mathematical
form

dsα
dt

= vα−1 − vα ≡ vl − vα,
dvα
dt

= amic (sα(t), vα(t), vl(t)) . (9)
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The microscopic acceleration function amic(s, v, vl) characterizes the specific
microscopic model and must satisfy the plausibility conditions (Wilson and
Ward, 2011; Treiber and Kesting, 2010b)

∂amic

∂s
≥ 0,

∂amic

∂v
< 0,

∂amic

∂vl
≥ 0, (10)

as well as
amic(∞, v0, vl) = amic(0, 0, vl) = 0. (11)

From this it follows that, for identical driver-vehicle units, the considered
model class possesses a one-parameter family of homogeneous-stationary equi-
librium states characterized by the “microscopic fundamental diagram” ve(s)
in which the equilibrium speed function is defined by amic(s, ve(s), ve(s)) = 0
and satisfies ve(0) = 0, v′e(s) ≥ 0, and ve(∞) = v0.

In order to investigate string instability, we consider traffic flow in an infinite
homogeneous system which initially is in a steady state defined by sα(t) = se
and vα(t) = ve. This is only a solution to (9) if se and ve are related by the
already mentioned microscopic fundamental diagram. Now we introduce per-
turbations in the form of linear modes with a common real-valued wavenumber
k and amplitudes s̃ and ṽ:

sα(t) = se + s̃eλt+iαk,

vα(t) = ve + ṽeλt+iαk,
(12)

where i =
√
−1. Inserting the perturbations into (9) shows that this ansatz

is only consistent with the general car-following model if the complex growth
rate λ(k) depends on the wavenumber k according to the quadratic equation

λ2 −
(

∂amic

∂v

∣

∣

∣

∣

∣

e

+ e−ik ∂amic

∂vl

∣

∣

∣

∣

∣

e

)

λ+
(

1− e−ik
) ∂amic

∂s

∣

∣

∣

∣

∣

e

= 0. (13)

Here, the subscript e stands for “taken at equilibrium”, i.e., s = se, and
v = vl = ve. The stationary state is string stable if and only if the real part
of λ is nonpositive for both solutions of the quadratic equation and for all
possible wavenumbers k. As elaborated in detail elsewhere (Wilson and Ward,
2011; Treiber and Kesting, 2010b), this leads to following criterion for string
instability:

v′e(se) >
1

2

(

∂amic

∂vl

∣

∣

∣

∣

∣

e

− ∂amic

∂v

∣

∣

∣

∣

∣

e

)

. (14)

A typical example of such a model is the Intelligent Driver Model (IDM) (Treiber
et al., 2000). It is characterized by the acceleration function

aIDM(s, v, vl) = a

[

1−
(

v

v0

)δ

−
(

s∗

s

)2
]

, s∗ = s0 + vT +
v(v − vl)

2
√
ab

, (15)
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where v0 is the desired speed, a and b are comfortable accelerations and de-
celerations, δ is the acceleration exponent, s0 denotes the minimum gap, and
T gives the desired time headway in car-following situations. For this model,
the instability criterion (14) becomes (Treiber and Kesting, 2010b)

(v′e)
2 >

a(s0 + veT )

s2e

[

s0 + veT

se
+

vev
′

e√
ab

]

. (16)

Obviously, string instability requires sufficiently low values of the acceleration
parameter a and time headway T . For the limiting case of very congested
traffic, se → s0, condition (16) reduces to a < s0/T

2.

The class of considered macroscopic models consists of second-order models
that are formulated in continuous space and time by the equations

∂ρ

∂t
+

∂(ρV )

∂x
=0, (17)

∂V

∂t
+ V

∂V

∂x
+

1

ρ

∂P (ρ)

∂x
=A (ρ, V, ρa, Va, ρx, Vx, ρxx, Vxx) . (18)

Here, the “traffic pressure” P (ρ) comprises the macroscopic kinematic effects
of a finite microscopic speed variance (Treiber et al., 1999). The macroscopic
acceleration function A(·) may depend on the density ρ(x, t), the speed field

V (x, t), and on the gradients, ρx = ∂ρ(x,t)
∂x

, ρxx = ∂2ρ(x,t)
∂x2 , vx, and vxx (defined

in analogy). Furthermore, the acceleration function may depend on the fields
calculated at an “anticipated” position,

ρa = ρ(xa, t), Va = V (xa, t), where xa > x. (19)

A typical representative of this class of nonlocal models is the gas-kinetic based
traffic model (GKT) (Treiber et al., 1999).

For local macroscopic models such as the Payne model (Payne, 1979) or the
Aw-Rascle model (Aw and Rascle, 2000), the linear long-wavelength anal-
ysis leads to a generalization of the string instability criterion proposed in
Ref. (Helbing, 2001),

(ρeV
′

e )
2 ≤ P ′

e − ρe

(

V ′

e

∂A

∂Vx

+
∂A

∂ρx

)

e

, (20)

where P ′

e = P ′(ρe) and V ′

e = V ′(ρe). The other quantities are evaluated at
equilibrium (subscript e) as well. Remarkably, the second derivatives ρxx and
Vxx do not enter this criterion. For nonlocal models, there is no need for gradi-
ent terms in the acceleration function. A long but straightforward calculation
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results in the string instability criterion

(ρeV
′

e )
2 ≤ P ′

e − ρesa

(

V ′

e

∂A

∂Va

+
∂A

∂ρa

)

e

, (21)

where sa = xa − x denotes the anticipation distance in the stationary situa-
tion. Simulations with the GKT model confirmed the correctness of this result
(Fig. 7).

3.3 Convective instability

In deriving approximate analytic criteria for the linear case for both micro-
scopic and macroscopic models, we directly evaluate the definition (8) by cal-
culating a linear response function (Green’s function) G(x, t) to the ideally
localized instantaneous unit perturbation

U(x, 0) = G(x, 0) = A0 δ(x), A0 = 1m2/s, (22)

and determining the growth rate of its amplitude for the ray x(t) = 0. The
δ-distribution (satisfying

∫ b
a δ(x) dx = 1 if 0 ∈ [a, b] and zero, otherwise) is

an abstraction of the initial condition (5). We first expand the solution into
Fourier modes. For the macroscopic case, we set







ρ(x, t)− ρe

V (x, t)− Ve





 ≡







ρ1(x, t)

G(x, t)





 = Re







∞
∫

−∞

dk eikx







ρ̂(k)

Ĝ(k)





 eλ
∗(k)t





 , (23)

where λ∗ is the complex conjugate of λ. Here, we have only considered the
branch of “slow modes” containing the instability (there is another set of fast
relaxing modes). A similar ansatz applies for the microscopic models. Inserting
Eq. (23) into the model equations (17) and (18) leads to a complex growth
rate of the functional form

λ(k) = σ(k) + iω(k) = −p(k)

2
±
√

p2(k)

4
− q(k) , (24)

where the sign is chosen to obtain the slow mode. The complex coefficients de-
pend on the model class. For the nonlocal macroscopic models, the coefficients
are given by

p(k) =−
(

2ikVe +
∂A

∂V
+

∂A

∂va
e−iksa

)

e

, (25)

q(k) = ikVe

(

∂A

∂V
+

∂A

∂Va

e−iksa

)

e

− ikρe

(

∂A

∂ρ
+

∂A

∂ρa
e−iksa

)

e

+ k2(P ′

e − V 2
e ).(26)
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(a) Analytical Expression (b) IDM Simulation

Fig. 6. Traffic flow at the limit between convective and absolute string instability
for the Intelligent Driver Model (IDM). Shown is the linear response to the pertur-
bation (22) of the stationary state Ve = 48km/h (a) according to the analytical ex-
pression (34), (b) for the IDM simulation. The IDM parameters are v0 = 120 km/h,
T = 1.5 s, s0 = 2m, a = 1.04m/s2, and b = 1.5m/s2. The vehicle length is set
to 5m.

Similar expressions can be found for the local macroscopic models. For micro-
scopic models of the form (9), the coefficients

pmic(k) =−
(

∂amic

∂v
+

∂amic

∂vl
e−ik

)

e

, (27)

qmic(k) =
(

1− e−ik
)

(

∂amic

∂s

)

e

(28)

relate to the “microscopic” growth rate λmic = −pmic/2±
√

p2mic/4− qmic which
is connected to the growth rate of the macroscopic solutions via

λ(k) = λmic (k/ρe) + ivek. (29)

The Fourier amplitudes ρ̂(k) and Ĝ(k) are determined by the initial condi-
tions. For the localized initial condition (22), one obtains Ĝ(k) = A0(2π)

−1

while ρ̂(k) depends on the ratio of the density and speed amplitudes of the
eigenvector for the corresponding slow mode. With (23), this leads to

G(x, t) = Re[G̃(x, t)], G̃(x, t) =
A0

2π

∞
∫

−∞

dk exp [ikx+ λ∗(k)t] . (30)

In order to approximatively solve this complex integral, we assume that only
modes near the fastest growing mode (growth rate σ0 > 0, wavenumber k0)
contribute significantly. This allows for an expansion of λ(k) around this mode,

λ(k) = σ0+ i [ω0 + vg(k − k0)]+
1

2
(σkk + iωkk)(k−k0)

2+O
[

(k − k0)
3
]

. (31)

Here,
k0 = arg max

k
(Re λ(k)) , (32)
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Fig. 7. Convectively unstable traffic flow for the GKT model for a homogeneous den-
sity ρe = 38veh./km. Shown is the linear response to the localized perturbation (22)
(a) according to the analytical expression (34), (b) for the simulation.

and the expansion coefficients are given by

σ0 = Re(λ(k0)), ω0 = Im(λ(k0)), vg = Im(λ′(k0)),

σkk = Re(λ′′(k0)), ωkk = Im(λ′′(k0)).
(33)

Inserting this in Eq. (30) and solving the resulting complex Gaussian integral
gives the final expression for the complex response function,

G̃(x, t) =
A0√
2πλ2t

exp [i(k0x− ω0t)] exp











σ0 −
(

vg − x
t

)2

2λ2





 t





 , (34)

where λ2 = iωkk − σkk.

In order to test the accuracy, we have compared the analytical result (34) with
simulated response functions for the microscopic IDM (Fig. 6) and the macro-
scopic GKT model (Fig. 7). For the GKT model equations see Ref. (Treiber
et al., 1999). The GKT model parameters are set to V0 = 128 km/h, T = 1.6 s,
τ = 31 s, ρmax = 140 veh./km, and the anticipation factor γ = 1.2. The param-
eters of the velocity variance function (again, see Ref. (Treiber et al., 1999))
are α0 = 0.008, ∆α = 0.012, ρc = 0.27 ρmax, and ∆ρ = 0.1 ρmax. In spite of all
the approximations, we have found a nearly perfect agreement including fine
details for both the IDM and the GKT model.

An analytic criterion for convective instability is obtained from the response
function by inserting it into the defining condition (8). Traffic flow is convec-
tively unstable, if it is linearly unstable (σ0 > 0), but the real growth rate
σconv of the amplitude of G̃(x, t) along the ray x(t) = 0 is negative. From (34),
one obtains

σconv = σ0 −
v2g
2D2

, D2 = −σkk

(

1 +
ω2
kk

σ2
kk

)

. (35)

Consequently, the criterion for convective instability can be expressed by the
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class 1b, 2a, and 2b. The other IDM parameters and the vehicle length are the same
as in Fig. 6.

conditions

0 < σ0 ≤
v2g
2D2

. (36)

This concludes the derivation of an analytic criterion for convective instability.
It should be noted that criterion (36) implies that the linear string instability
always starts as a convective one. Often, the instability remains convective
for the whole range of equilibrium densities (Fig. 8(a) and (b)). For typical
congested situations, the group velocity vg is of the order of (but not equal
to) the propagation velocity ccong, and the dispersion coefficient D2 is of the
order of 500m2/s.

Simulations with the IDM and the GKT model show that criterion (36) defines
the actual density range of convective instability, e.g. that of Fig. 8(d), with
errors below 1%. For illustration, Fig. 6 plots the response to the perturba-
tion (22) for traffic flow modeled by the IDM at the limit of convective insta-
bility. In order to fulfill the threshold condition σ0 = v2g/(2D2) implied by (36),
the IDM acceleration parameter has been set to a = 1.04m/s2. The simulation
result displayed in Fig. 6(b) shows that (i) the analytical expression (30) is
essentially identical to the simulation result (Fig. 6(a)), (ii) both the simula-
tion and the analytic formula lead to a stationary downstream boundary of
the congestion (although no bottleneck is present) which confirms that traffic
flow is, in fact, at the threshold between convective and absolute instability.
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3.4 Stability classes and class diagram

The overall stability properties of a traffic flow model are given by the stability
diagram denoting the stability type for all possible equilibrium states parame-
terized by the associated density ρe = 1/(se+l). Generally, one obtains several
density regions with the boundaries 0 < ρ1 ≤ ρ2 ≤ ρcv ≤ ρ3 ≤ ρ4 ≤ ρmax,
see Fig. 8. Homogeneous traffic flow is absolutely stable for ρ < ρ1 or ρ ≥ ρ4,
metastable for ρ ∈ [ρ1, ρ2] or [ρ3, ρ4], convectively unstable for ρ ∈ [ρ2, ρcv],
and absolutely unstable for ρ ∈ [ρcv, ρ3]. Furthermore, the number and types
of traffic patterns do not only depend on the set of observed stability types,
but also on the relative position of the stability boundaries with respect to
the density at (static) capacity ρK = arg maxρ Qe(ρ). However, not all combi-
nations of the relative positions of the stability limits ρi are relevant. In fact,
only five “stability classes” lead to significantly different sets of traffic patterns
(cf. Fig. 8):

• Class 1a: Traffic at capacity (density ρK) is (linearly) unstable, ρ2 < ρK ,
and remains so for all higher densities, ρ3 = ρ4 = ρmax. Furthermore, ρK <
ρcv < ρmax, i.e., the instability is absolute for comparatively light congested
traffic and generally becomes convective for higher densities.

• Class 1b: As class 1a, but traffic restabilizes for heavily congested traffic,
ρ3 < ρmax.

• Class 2a: Traffic at capacity is metastable or stable, and unstable for suffi-
ciently high densities, ρK < ρ2 < ρ3 = ρmax. In most cases, the instability
is purely convective, but a small region of absolute instability is possible as
well.

• Class 2b: As class 2a, but with restabilization, ρ3 < ρmax.
• Class 3: Unconditionally stable, ρ1 = ρmax.

The stability class depends on the model and on the parameters. Some models
can even be “tuned” to any stability class. Figure 8 displays such a “class
diagram” for the IDM.
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Fig. 10. Simulations of the relevant elementary traffic patterns in an open system
with an onramp bottleneck using the GKT model with the same parameters as in
Fig. 7 relating to stability class 2b. (a) Low onramp flow such that ρcong < ρ2; (b)
and (c) intermediate onramp flows such that ρ2 < ρcong < ρ3; (d) severe bottleneck
(high ramp flows) such that ρcong > ρ3.

By scaling space in units of the minimum distance, and time in units of
√

s0/b,
the number of IDM parameters is reduced to three, and class diagrams can
be given for the complete parameter space (Fig. 9). Since, in general, the
desired acceleration a and comfortable deceleration b are similar in magni-
tude (a′ = a/b ≈ 1), the IDM exhibits stability classes 2a or 2b for realistic
parameterizations (or class 3 for city traffic where b is higher and s0 smaller).

The stability and class diagrams are crucial for a possible explanation of the
observed extended traffic patterns. The reasoning is as follows: After a traffic
breakdown at a bottleneck, the average traffic flow of the congested state
upstream is determined by the dynamic capacity Kdyn = K(1 − ǫ) of the
bottleneck (which is smaller than the static capacity by a capacity drop of
the order of ǫ = 10%). Consequently, the congestion pattern depends on the
stability properties of congested traffic at flow Kdyn.

For stability class 1, minor bottlenecks (high values of Kdyn) correspond to
absolutely unstable traffic, i.e., congested traffic is non-stationary everywhere
and consists of a sequence of stop-and-go waves triggered by the bottleneck
(TSG) (Helbing et al., 2009). The less severe the bottleneck, the lower the
difference Qout − Kdyn between the outflow of the waves and the bottleneck
capacity, i.e., the longer it takes until there is a sufficient number of vehicles to
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trigger the next stop-and-go wave. Conversely, the wave frequency increases
with the severity of the bottleneck until the stop-and-go waves are no longer
isolated but part of oscillatory congested traffic (OCT). For class 1b, traffic
becomes stable for very severe bottlenecks resulting in homogeneous congested
traffic (HCT). For class 1b, OCT (with very high frequencies) persists until
the complete standstill.

For stability class 2 (see Fig. 10), congested traffic is linearly stable for minor
bottlenecks, so a new high-flow homogeneous state (homogeneous synchro-
nized traffic, HST) is possible (Helbing et al., 2009). However, since traffic is
generally metastable in this situation, stronger perturbations can lead to stop-
and-go waves as well. When increasing the bottleneck strength, one obtains
OCT (class 2a) or the sequence OCT-HCT (class 2b), similarly to stability
class 1. Unlike class 1, however, the instability is nearly always a convective
one, so perturbations grow, but only in upstream direction. As will be shown
analytically in Sec. 4, this leads to essentially stationary traffic flow near the
bottleneck even if sustained finite perturbations are present. Since this se-
quence of patterns (stationary traffic at the bottleneck, oscillations further
upstream) is observed persistently, we conclude that the dynamics of traffic
flow is described by the stability classes 2a or 2b.

For stability class 3, congested traffic is always essentially homogeneous, and
the dynamics similar to that of first-order models (Lighthill and Whitham,
1955; Richards, 1956).

4 Sustained perturbations

In the previous section, we have defined convective instability in the traffic
context and provided an analytical criterion for its presence in a wide range
of models. As defining criterion, oscillations (triggered by a temporary and
local perturbation) grow but eventually propagate out of homogeneous open
systems. In this section, we consider realistic extended open systems with
bottlenecks and noise and show analytically that, instead of propagating out
of the system, the convective instability manifests itself in congested pattern
with stationary traffic near the bottleneck, and growing oscillations further
upstream.

To this end, we investigate the statistical properties of solutions to models
of the class (9) with an additional localized noise term in the acceleration
equation, caused, e.g., by mergings at onramps or offramps,

dvα
dt

= amic [sα(t), vα(t), vα−1(t)] + ξα(t)vαδ[xα(t)]. (37)
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Fig. 11. (a) A realization of the solution (38) to the stochastic equation (37) for the
IDM with a = 1.10m/s2 and the other parameters as in Fig. 6. (b) The correspond-
ing Green’s function.

Here, ξα(t) are realizations of independent standard-normally distributed stochas-
tic variables. The distribution δ[xα(t)] models an instantaneous change of the
speed by ξα when this vehicle crosses the location x = 0.

Since we are interested in the collective properties of oscillations, it is sufficient
to investigate the statistical properties of an approximate macroscopic speed
field U(x, t) representing the local deviations from the equilibrium speed ve.
In the linear regime, the realizations of this velocity field are given by

U(x, t) ∝
∞
∫

0

dτ G(x, τ)ξ(t− τ), 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′), (38)

where 〈·〉 denotes averaging over the realizations, and the Green’s function
G(x, t) is given by Eq. (30) with (34). The integral extends over time, but not
over space, representing perturbations that are sustained in time but localized
at x = 0. Typically, such perturbations occur near bottlenecks. As an example,
they may represent disturbances caused by lane changes of entering or leaving
vehicles near onramp or offramp bottlenecks. 1

The stochastic properties of the solution (38) (a realization is shown in Fig. 11
(a)) can be described by the structure function

S(x, x′, t, t′) = 〈U(x, t)U(x′, t′)〉. (39)

Inserting Eqs. (38) and (34) and dropping some algebraic prefactors leads,
after a lengthy calculation, to an approximate analytic expression for the speed

1 Simulations indicate that extended spatiotemporal noise will not lead to signifi-
cant changes.
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Fig. 12. (a) Effective linear growth rate and (b) wavelength of speed oscillations as
a function of the speed near the bottleneck characterizing the severity of the bottle-
neck. The analytical IDM expression −cσ̃ for sustained perturbations, Eq. (41), is
compared with the data of Fig. 3. The IDM parameters a and δ have been changed
from their standard values to a = 1.23m/s2 and δ = 7, respectively.

variance:

σ2
V (x, t) ≡ S(x, x, t, t) ∼ 1

β
exp

[

2xvg
D2

(1− β)
]

with β =

√

√

√

√1− 2D2σ0

v2g
.

(40)
This expression is valid for sufficiently large t under the condition x ≪ 2D2/(vgβ),
i.e., sufficiently far away from the threshold to absolute instability and from
the source of the perturbations. (The right-hand side of the inequality evalu-
ates to −850m for the parameters of Fig. 11.)

Figure 11 displaying a realization of the solution (38) to the stochastic equa-
tion (37) for the IDM illustrates this result. In spite of linear instability and
sustained noise, the oscillations remain finite if the instability is convective
(0 < β < 1) . Furthermore, a stationary situation is reached in the stochastic
sense after some time (approximatively 70min in Fig, 11). Consequently, the
variance (40) depends only on x. Finally, the oscillations grow in the upstream
direction (notice that vg < 0), in agreement with most of the observations.
From Eq. (40), one can extract a quantity that is observable from the realiza-
tions U(x, t), Fig. 11(a), or from traffic data, Fig. 3(a): The distance scale L̃
in which the amplitude grows by a factor of e is given by

L̃ = −1

σ̃
= − D2

vg(1− β)
. (41)

Using the observable phase velocity c = ω0/k0, this can be translated into an
effective growth rate,

σeff = − c

L̃
(42)

For the IDM parameters and the steady-state speed of Fig. 11, one obtains
a physical wavelength L = 2πk0/ρe = 1.5 km, a distance scale L̃ = 3.5 km,
a maximum growth rate σ0 = 3.0 h−1, and the effective growth rate σeff =
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4.4 h−1. Notice that the effective growth rate inferred from the growth scale
is higher than the maximum linear growth rate σ0. First investigations of the
statistic properties of the realizations (Fig. 11(a)) indicate that this surprising
result (and, more generally, Eq. (40)) are quantitatively correct, in spite of
the numerous approximations made during its derivation.

In the last paragraphs, we have shown that the analytic calculations and the
simulations agree quantitatively. However, a model validation implies test-
ing the model predictions against the data, for a wide range of bottleneck
strengths. Specifically, for a given microscopic or macroscopic model and a
given parameter set, the theory gives the predictions

• c = ve + ω0/(k0ρe) and cmac = ω0/k0 for the phase velocity of microscopic
and macroscopic models, respectively,

• L = 2π/(k0ρe) and Lmac = 2π/k0 for the wavelength of microscopic and
macroscopic models, and

• Equation (42) for the effective growth rate

as a function of the speed ve of the underlying stationary state. Since this
is our indicator for the bottleneck strength, each model and each parameter
combination gives three quantities (the propagation velocity, the wavelength,
and the growthrate) as a function of the bottleneck strength which then can
be compared with the data.

Figure 12 shows such a comparison for the IDM. By varying only two param-
eters with respect to the previously used settings, we obtain agreeing values
(within statistical uncertainty) for the growth rate (42) and the propagation
velocity (not shown) over the complete range of bottleneck strengths. The in-
crease of the wavelength with decreasing bottleneck strength (i.e., increasing
speed at the bottleneck) is predicted on a qualitative level, but the predicted
wavelength is consistently too small by a factor of about two. First simula-
tions indicate that this deficiency is resolved by extending the models to in-
clude more specific human properties such as reaction time or looking several
vehicles ahead (Treiber et al., 2006).

5 Conclusion

In order to gain qualitative and quantitative insight into the nature of insta-
bilities of traffic flow, we have analyzed a large database of congested traffic on
a German freeway and give quantitative detail of the key factors of congested
traffic instabilities. Notably, we found positive perturbation growth rates for
most instances of congestions and no empirical evidence against the existence
of linear instabilities. Investigations of traffic data around the world (Zielke
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et al., 2008) come to similar conclusions.

To understand the observations, one must relate them to mathematical models
and theoretical concepts, preferably analytically and quantitatively. To this
end, we define all relevant theoretical stability concepts and give analytic
criteria for convective and absolute string instability for the wide class of car-
following and macroscopic models that are formulated in continuous time and
possess a fundamental diagram. Although some approximations have been
used in deriving the analytical threshold between convective and absolute
instability, it has been verified by simulations within observation uncertainty
(about 1% of the width of the convectively unstable region).

We found new insight into the nature of traffic flow instabilities in open sys-
tems on two levels. On the qualitative level, we could relate the set of simulated
spatiotemporal patterns (“dynamic phases”) to three “stability classes” (and
two subclasses) which are derived from the stability diagram, i.e., from the set
of density regions where a certain stability type applies. The original “phase
diagram” of Ref. (Helbing et al., 1999) relates to stability class 1b, but other
stability classes lead to different phase diagrams. Moreover, we have found
that the observed patterns of congested traffic are consistent with the classes
2a and 2b. The stability class depends not only on the model but also on the
parameters. In particular, the Intelligent Driver Model (IDM) can assume any
stability class which we have represented by a “class diagram” in parameter
space. Scanning the complete parameter space reveals that, for realistic values,
the IDM assumes class 2a or 2b, in agreement with the observations.

In order to get further insight into the nature of convectively unstable flow,
we have analytically related the properties of extended congested patterns
with convectively unstable flow in an open system with sustained local noise
(caused, e.g., by mandatory lane changes at lane closings, onramps, or of-
framps). The resulting structure function corresponds to stationary traffic
flow near the bottleneck and, simultaneously, to growing oscillations further
upstream if and only if traffic flow is convectively unstable. This means, the
most common congested pattern is directly related to convective instability.

The predictions of the analytical calculation are quantitatively verified by
simulations with the IDM and the GKT model in the presence of sustained
localized noise. Furthermore, the results agree semi-quantitatively with the
data: While the associated growth rates and propagation velocities agree with
the data within statistical uncertainty for all values of the bottleneck strength,
the wavelengths generally remain too short. This, however, is not a deficiency
of the analytic theory but of the specific model to which this theory is applied.
In turn, the theory provides a powerful tool for validating the dynamic aspects
of models for traffic flow.
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In conclusion, there is much evidence that the largely neglected concept of
convective instability provides the final missing link in explaining the dynamics
of congested traffic flow.
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