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A B S T R A C T

This paper presents the latest achievements of TEMA (Transport Technology and Mobility Assessment) platform,
designed to harness the potential of big data to support road transport policies in Europe. The platform relies on
datasets of real world driving and mobility patterns collected by means of navigation systems and it is developed
by the EC Joint Research Centre since 2012. Previous studies have demonstrated the potential of the platform in
assessing real world emissions from conventional fuel vehicles and exploring the impact of the deployment of
electrified vehicles in terms of usability, technology potential, energy requirements and infrastructural design.
These last studies have been carried out on two pilot regions, i.e. the Italian provinces of Modena and Florence,
whilst this article presents the earliest results achieved enlarging the study to a European-wide scale. To this
purpose, results from additional fourteen new regions are presented, i.e. Amsterdam (NL), Brussels (BE),
Luxembourg (LU), Paris (FR), Lisbon (PT), Krefeld (DE), Warsaw (PL), Bratislava (SK), Vienna (AT), Ljubljana
(SI), Zagreb (HR), Budapest (HU), Sofia (BG), Athens (GR). The complete dataset accounts for approximately
2.57 billion records, 139 million driven kilometres and 632,186 monitored vehicles, being one among the most
extensive driving datasets ever processed for policy support studies. This work constitutes the first attempt for
initiating a continental scale study of driving behaviour in Europe, with the aim of showing how the proposed
approach allows for unprecedented opportunities to shape the future of road transport.

1. Introduction

In Europe over 70% of citizens live in urban areas (Eurostat, 2011)
and projections forecast an increase to nearly 80% by 2030, (United
Nations Population Fund, 2007), (European Environment Agency
(EEA), 2006). Densely populated cities increase strains on energy,
transportation, resources, housing and public spaces needs, and, despite
the efforts made so far, there are still many challenges, particularly
concerning lowering Greenhouse Gases (GHGs) and pollutants emis-
sions. Road transport contributes to about one–fifth of the total carbon
dioxide emissions in Europe, representing the sector with the second
highest emissions, just behind the energy sector, and grown by nearly
23% between 1990 and 2010 (European Commission Website, 2014).
This calls for major changes for future mobility, as outlined by EC White
Paper 2011 (European Commission, 2011), by the Strategy and Action
Plan for creating an Energy Union (European Commission, 2015) and
by the European strategy for low-emission mobility (European
Commission, 2016).

The development of a sustainable mobility implies moving towards
a transport system which turns to be a combination of intelligence, low
carbon energy sources and adaptable services (Hautala et al., 2014),

with integrated networks of two or more modes of transport which
interplay seamlessly. Such integration must optimise the transport
services, and, at the same time, improve safety, reduce the energy
consumption and systems’ overall environmental impact (European
Parliament, 2017). Transport demand will certainly increase in the EU
of the next decade, pulled by five main drivers, (European Parliament,
2016):

• population growth and intra-border immigration that will increase
the mobility demand within the EU;

• increasing urbanization that will place significant pressure on major
cities and particularly on capital regions. In the last 15 years some
countries have seen population growth of over 25% whilst others
have lost almost 20%, with a tendency to move towards Western
Europe;

• evolution of the employment market that will demand for increased
flexibility and hence flexible travel demand;

• income growth that should accompany increased employment and
gross domestic product (GDP) growth and that will act as a con-
tinuing upward pressure on mobility in most areas;

• mobile technologies and internet with the potential of such
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technologies to substitute physical mobility with virtual mobility,
even though there is no evidence of the reduction of the traveling
today; for example the rise of e-commerce seems to be creating a
significant pressure for light commercial vehicle traffic.

All these factors drive towards the new concept of Mobility as a
Service (MaaS) and Delivery as a Service (DaaS) with a mind shift from
the idea of owning a vehicle to the idea of purchasing mobility as a
service through a digital interface, leaving the system deciding about
the most effective and efficient solution to fulfil the journey.

In this framework Information and Communication Technology
(ICT) will play a major role, becoming a functional element of the en-
ergy and transport infrastructure, enabling a completely new level of
optimization and automation (Hautala et al., 2014). In fact, the last
decade has been characterised by the introduction of a number of ICT-
driven innovations which in various ways contribute to better use the
capacity of the systems and provide better information to users. These
include smart intersection control in urban areas, ramp metering on
access to motorways, contactless toll payment systems, parking gui-
dance systems and variable message signs that display information as-
sociated with congestion, alternative routes and many others (European
Parliament, 2016). They make large use of sensing combined with
Global Positioning System (GPS) technology to deliver real time

information to travellers, through an interface that is, in most cases, the
mobile phone. Smartphones are, in fact, increasing their stakes as pri-
mary communication device and in Western Europe they are used in
everyday life by approximately half of the population. This is accom-
panied by vertical rate of growth of mobile data traffic, and it is esti-
mated that the average mobile user consumed in 2013 as much as 39
times more data than in 2009 (Lee et al., 2013).

The potential of smartphones in relation to transport application is
depicted by Mokhtarian (1990) which identifies four relationships be-
tween traveller and digital device:

• substitution, where devices decrease travel;

• enhancement, where technology changes the utility of particular
modes of travelling, affecting choice between modes;

• efficiency, where telecommunications make travel more efficient;

• indirect, where telecommunications affect land use, which in turn
affect travelling.

The rise of the company Uber provides a clear demonstration of how
mobile technology can quickly reconfigure existing aspects of mobility
in new ways (European Parliament, 2016).

Also the car itself is nowadays undergoing a data revolution.
Modern vehicles are equipped with about 40 microprocessors and

Nomenclature

BEV battery electric vehicle
DaaS delivery as a service
EU European Union
EV electric vehicle
GDP gross domestic product
GIS geographic information systems
GHG greenhouse gas
GPS global positioning system
HDV heavy duty vehicle

HEV hybrid electric vehicle
HVAC heating, venting and air conditioning
ICT information and communication technology
IoT internet of things
LDV light duty vehicle
MaaS mobility as a service
MDV medium duty vehicle
PHEV plug-in hybrid electric vehicles
TEMA transport technology and mobility assessment
UF utility factor
V2G vehicle-to-grid

Fig. 1. Structure of TEMA platform.
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dozens of sensors that collect data which are processed in real-time to
maximise the performance, efficiency, and safety of the vehicle
(Hitachi, (2015)). According to Siegel (2016) today’s modern car gen-
erates twenty-five gigabytes of data every hour and, of that data, about
1–2 kilobytes are only stored and fully utilised. Twenty-five gigabytes is
also the amount of data that the future connected car will upload to the
cloud every hour, generating immense business opportunities. Ac-
cording to McKinsey&Company (2016), the expected growth of the
value pool from car data and shared mobility could add up to more than
USD 1.5 trillion by 2030, and the foreseeable proliferation of new
features and services will turn car data into a key topic on the agenda of
the auto industry. New players are entering this competitive area, as
these companies are familiar with collecting enormous amounts of data,
processing them, combining them with different sources, and deploying
features and services that customers are willing to pay for. The Internet
of Things (IoT) will increasingly explore the possible applications of all

this data that has been hidden until today or considered too dense to be
analysed (i.e. traffic patterns, driver behaviour, failure prediction)
(Siegel, 2016).

In this context, big data has the potential of revolutionising the way
in which transport policies are conceived driving the process of re-de-
finition of the current transport policies towards more effective im-
plementation of the actions that need to be undertaken to meet the
long-term goals of the Union. Recent studies prove the potential of data,
being used to measure commuting efficiency in megalopolis (Zhou
et al., 2014), to explore public transport users’ behaviours (Tao et al.,
2014), to simulate individual mobility choices in carpooling (Galland
et al., 2014) and to classify activity patterns (Liu et al., 2015), (Hasan
and Ukkusuri, 2014), with applications in the fields of mobility net-
works design and infrastructures (Marcianó et al., 2015), (Xu et al.,
2013), (Ortega et al., 2014) and multi-modal transportation systems
(Zhang et al., 2013). On one hand these studies constitute interesting

Table 2
Comparison of mobility for Europe and the USA.

Source Year Country Average no. of
trips per day [#]

Average distance
per trip [km]

Poll size (effective) Comment

households [·103] persons[·103]

Marconi et al. (2004) 2004 Switzerland 4.0 10.4 28 29 CATI geo-coding system
surveysGermany 3.9 11.1 50 130

USA 4.1 17.9 66 –
Norway 3.6 11.9 – 20 (1 year) Written surveys
The
Netherlands

3.1 – 64.2 146.5

Austria 3.0 9.5 12.8 –
Great Britain 2.8 11.3 10 23
France 3.2 2.9 14.2 3 (years) Face-to-face and written

surveys

Eurostat: Passenger mobility in
Europe (EUROSTAT,
1999–2001)

1999–2001 Switzerland 3.6 13 Data collected between1999 and 2001; data collected based on
populations of up to 40,000 households depending on the studied

country
Germany 3.4 11.7
France 2.9 12.2
Latvia 1.9 4.6
The
Netherlands

3.3 10.2

Austria 3 9.4
Finland 2.9 15.4
Sweden 2.7 16.3
United
Kingdom

2.9 11

Denmark 2.7 12.7
Norway 3.3 11.5

ISFORT (Mobility in Italian
cities) (ISFORT, 2008)

2008 Italy 3.12 12 Average of mobility in big cities 15,000 interviews per year, age
between 14 and 80, working days

ISFORT (2015) 2015 Italy 2.7 11.5 Average of mobility in big cities 15,000 interviews per year, age
between 14 and 80, working days

ACI CENSIS (2012) 2012 Italy 3 on week days,
2.1 on weekends

10 on week days
11 on weekends

Average of various cities

GPS data from Table 1 2011 Prov. Modena 6.6 7.8 GPS
2011 Prov. Florence 6.4 8.0
2015 Prov.

Amsterdam
1.9 19.7

2015 Prov. Brussels 7.9 7.7
2015 Prov. Paris 4.2 17.0
2016 Prov.

Luxemburg
2.5 11.9

2015 Prov. Lisbon 5.8 15.0
2015 Prov. Krefeld 1.7 88.8
2016 Prov. Warsaw 2.4 51.8
2016 Prov. Bratislava 1.5 22.9
2016 Prov. Wien 13.8 37.9
2016 Prov. Ljubljana 3.4 45.3
2016 Prov. Zagreb 4.6 24.3
2016 Prov. Budapest 4.1 44.1
2016 Prov. Sofia 5.4 16.4
2015 Prov. Athens 4.9 11.0

E. Paffumi et al. Case Studies on Transport Policy 6 (2018) 785–802

788



(a) 

(b)
Fig. 2. Share of the private (a) and commercial (b) vehicles in motion and parked in time.
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advances of big data in transport, but, on the other hand, they are
limited to single case studies and applications, mostly grounded on data
averaging and data aggregation approaches.

This article presents the follow up of a series of articles from the
authors, summarized in (De Gennaro et al., 2016a) that explored sev-
eral aspects of big data for transport, based on pilot driving datasets
from the Italian provinces of Modena and Florence. These studies pre-
sent the application of the EC TEMA (Transport Technology and Mo-
bility Assessment) platform, developed by the JRC since 2012, in re-
spect to quantifying real world emissions from conventional fuel
vehicles and exploring the effect of the deployment of electrified ve-
hicles in terms of usability, technology potential, energy requirements
and infrastructural design. In this work the mobility study is enlarged to
a EU-wide scale, including additional fourteen datasets from Am-
sterdam (NL), Brussels (BE), Luxembourg (LU), Paris (FR), Lisbon (PT),
Krefeld (DE), Warsaw (PL), Bratislava (SK), Vienna (AT), Ljubljana (SI),
Zagreb (HR), Budapest (HU), Sofia (BG), and Athens (GR). The data
consists of 632,186 monitored vehicles in total, equivalent to 10.2
million trips and parking events and 139.6 million kilometres. The
databases have been collected by private companies (Octo Telematics
Italia S.r.l., 2013), (Be-Mobile, Traffic and Mobility, 2016),
(Universalis, 2016), and processed by the EU Commission Joint Re-
search Centre. This work focuses on few applications of TEMA modules,
related to the statistical mobility analysis at European scale and geo-
graphic mapping of some results to depict the extensiveness of the
datasets and the challenge overcome to process and handle this large
set of data. This constitutes a first attempt for a continental scale pilot
study of travel behaviour in Europe, with the aim of showing how the
presented data and processing methodologies allows for unprecedented
opportunities to shape the next generation transport policies towards a
zero emission society.

2. Background information and methodology

2.1. Introducing TEMA

TEMA is a data processing platform natively interfaced with GNNS,
developed for supporting the development of transport policies in
Europe (De Gennaro et al., 2016a), (European Commission, Joint
Research Centre, 2012). It makes an extensive use of data mining, and it
has been developed according to different policy requests in a modular
approach, resulting in a flexible software environment capable of
testing the effects of introducing new vehicle technology in real-world
mobility on a regional scale. The platform at moment includes five main
modules beyond the pre-processor (i.e. Module 0) according to the

structure reported in Fig. 1.
The applications of TEMA carried out so far included:

• quantification of the real-world potential of deploying electrified
vehicles under different technological and infrastructural con-
straints, (De Gennaro et al., 2014a), (Paffumi et al., 2015);

• quantification and geo-referencing of the shift from oil to electric
energy and the impact on the electricity distribution grid of EVs (De
Gennaro et al., 2014b);

• design of a customer-driven smart recharge infrastructure and tai-
lored V2G application in public areas (De Gennaro et al., 2015),
(Paffumi et al., 2016);

• evaluation of the driving and evaporative real world emissions from
the current fleet of conventional vehicles and gaseous emissions
reduction potential from the introduction of new vehicle technolo-
gies (Martini et al., 2014), (De Gennaro et al., 2016b);

• evaluation of the Utility Factor (UF), based on collected vehicle
activity data to evaluate the real world conditions of use of plug-in
hybrid electric vehicles, (Paffumi et al., (2018));

• support to the eco-innovation technologies assessments, (Lodi et al.,
2018);

• in-vehicle battery durability assessment (De Gennaro et al., n.d.),
(Loiselle-Lapointe et al., 2018).

2.2. Introducing the data

As per section above, TEMA is a data processing platform that relies
on real-world mobility input data. In respect to the previous applica-
tions, in this work the platform is analysing an extensive input dataset.
It consists of sixteen databases of navigation data collected by GPS
(Octo Telematics Italia S.r.l., 2013), (Be-Mobile, Traffic and Mobility,
n.d.), (Universalis, n.d.), in fifteen European countries, as summarised
in Table 1. The data includes 632,186 monitored vehicles equivalent to
2.57 billion GPS records and 10.19 million trips and parking events, for
a cumulative driving distance of 139.57 million kilometres.

The data acquisition campaign related to the Italian provinces of
Modena and Florence (Octo Telematics Italia S.r.l., 2013) extended over
a period of one month (May 2011) and has originally involved 52,834
conventional fuel vehicles in Modena and 40,459 vehicles in Florence
(i.e. respectively 12.0% and 5.9% of the fleet in these provinces) (De
Gennaro et al., 2014a). The analysis is then restricted to 16,263 vehicles
in Modena (30.7% of the original sample) and 12,478 vehicles in
Florence (30.8% of the original sample), in order to consider only the
share of the fleet predominantly driven in urban areas (defined as more
than 50% of the trips carried out within the province area). The

Table 3
Fleet shares per intervals of daily travelled distances.

Private vehicles[%] Commercial vehicles[%]

≤30 km ≤50 km ≤100 km ≥150 km ≥500 km ≥1,000 km ≤30 km ≤50 km ≤100 km ≥150 km ≥500 km ≥1000 km

Province of Modena 45.7 66.8 89.5 4.7 0.14 0.003 35.7 53.4 78.2 12.2 0.67 0.012
Province of Florence 49 68.3 88.6 5.3 0.18 0.003 36.3 53.6 77.9 11.7 0.57 0.008
Province of Amsterdam 57.9 74.1 92.3 2.4 0.0007 0 36 50.9 73.5 15.2 0.25 0.028
Province of Brussels 53.8 66.1 82.0 9.7 0.17 0.016 7.6 13.3 31.1 53.6 18.7 4.4
Province of Paris 35.7 52.2 76.6 12.1 0.20 0.0002 12.7 20.6 40.5 43.9 2.55 0
Province of Luxembourg 62.0 84.5 97.8 0.38 0 0 38.8 78.9 95.2 0.87 0 0
Province of Lisbon 0 0 0 0 0 0 20.8 37.2 69.3 14.6 0.15 0.035
Province of Krefeld 43.8 57.6 80.5 11.0 0 0 12.0 22.2 43.0 40.5 2.4 0.034
Province of Warsaw 33.3 46.7 60.0 30.0 0 0 39.2 47.3 59.1 33.9 2.3 0
Province of Bratislava 0 0 0 0 0 0 64.2 72.2 94.8 2.6 0.014 0
Province of Vienna 2.3 6.7 23.6 66.3 1.1 0 25.1 34.6 52.7 36.5 1.2 0.013
Province of Ljubljana 10.5 21 42.6 33.3 0 0 8.9 16 36.8 41.8 0.5 0.061
Province of Zagreb 25.4 40.8 66.8 20.2 0.56 0.26 19.7 32.9 59.5 24.2 0.38 0.042
Province of Budapest 12.5 25 45.8 31.3 2.1 0 9.7 16.5 33.2 52.4 2.0 0.051
Province of Sofia 0 0 0 0 0 0 29.6 46.6 71.9 17.4 0.57 0.060
Province of Athens 0 0 0 0 0 0 46.0 61.7 85.2 6.5 0.13 0.025
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analysed databases consist of approximately 16.9 million records (re-
presentative of 14.98 million km and 2.64 million trips) and 33.4
million records (representative of 20.66 million km and 1.87 million
trips) respectively. In both provinces about the 91% of the vehicles
were registered to the name of a physical person while the remaining

share were vehicles registered to the name of a commercial activity. To
the purpose of the driving behaviour statistical analysis these two
groups of vehicles have been treated separately; the first has been re-
ferred as private vehicles (mainly Light Duty Vehicles (LDVs)), while
the second as commercial vehicles (light vans, Medium Duty Vehicles

(a) 

(b) 
Fig. 3. Daily travelled distance for the private (a) and commercial (b) vehicles.
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(MDVs) and Heavy Duty Vehicles (HDVs)).
The data referring to all the other provinces (Table 1) has been

purchased from the private companies Be-Mobile, Traffic and Mobility
(n.d.) and Universalis (n.d.). These databases refer to an analysis period
of one week (2–8 March 2015, for Amsterdam, Lisbon, Krefeld and
Athens, 9–15 March 2015 for Paris and 7–13 March 2016 for Lux-
embourg, Warsaw, Bratislava, Vienna, Ljubljana, Zagreb, Budapest and

Sofia) except the case of Brussels for which two weeks monitoring are
available (2–15 March 2015). The vehicles are monitored up to the
boundary of the countries, when a label indicating “leaving/entering
the monitoring area” is added to the vehicle records. Information on the
road classification, such as, highways, national roads or urban roads
and road speed limits, where available, are also provided in the vehicle
databases together with an extra label indicating the GPS system of the

Table 4
Average trip distance, trip duration, parking duration and trip speed for all the databases.

Average trip distance [km] Average trip duration [m] Average parking duration [h] Average trip speed [km/h]

Private vehicles Province of Modena 7.69 11.63 4.07 28.92
Province of Florence 7.85 13.0 4.33 26.13
Province of Amsterdam 19.68 14.32 1.14 78.75
Province of Brussels 7.75 9.13 1.45 51.98
Province of Paris 16.97 20.05 1.18 44.87
Province of Luxembourg 11.88 13.99 1.703 54.491

Commercial vehicles Province of Lisbon 14.96 22.44 1.07 35.574
Province of Krefeld 90.51 90.84 0.80 65.09
Province of Warsaw 51.84 55.90 0.94 45.41
Province of Bratislava 22.93 22.89 0.40 50.17
Province of Vienna 37.43 35.96 0.48 57.87
Province of Ljubljana 50.69 75.79 0.87 44.15
Province of Zagreb 29.31 45.63 0.99 36.56
Province of Budapest 44.14 43.25 0.91 49.28
Province of Sofia 16.37 23.40 0.94 27.33
Province of Athens 11.0 26.15 0.69 25.19

(a) 

(b)
Fig. 4. Cumulative distribution functions of the averaged trip length, trip time, trip speed and parking duration; (a) private vehicles and (b) commercial vehicles.
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vehicle that generated the data: (1) built-in fleet management system
(mostly installed on HDVs, thus referred to as commercial vehicles), (2)
telematics and navigation systems (mostly installed on LDVs, thus re-
ferred to as private vehicle) and (3) smartphone applications (mostly
used in LDVs, thus referred to as private vehicles also). The categor-
isation in private and commercial vehicles is followed through the full
paper and their share is consistently reported in Table 1. The data was
acquired in these cases at a frequency of approximately 1 Hz.

The databases of Modena, Florence, Amsterdam, Brussels, Paris and
Luxembourg mainly include private vehicles, whilst the other mainly
include commercial vehicles. Monitored private vehicles sum up to
506,105 units, with 1.77 billion GPS records, equivalent to 8.56 million
trips and parking events, for a total driven distance of 101.87 million
kilometres. Commercial vehicles sum up to 126,081 units, with 0.80
billion GPS records, equivalent to 1.63 million trips and parking events
for a total driven distance of 37.7 million kilometres.

The correct pre-processing is a key for harnessing the data potential
and its subsequent application. For this reason the raw data has been
submitted to a cleansing and consistency check procedure (De Gennaro
et al., 2014a), (De Gennaro et al., 2016a) targeted to identify and re-
store trips affected by non-consistent data series and generic errors of
acquisition (e.g. trips not starting with an “engine switch-on” status
and/or not ending with an “engine switch-off” status). All the trips with
a length less than 30m and/or duration less than 30 s, not re-
presentative of a real mobility demand, are removed in the pre-pro-
cessing analysis. After this step, the cleansed data is submitted to a data
aggregation procedure, to reduce the databases to the records classified

per trip, day, week or month (where applicable). This process derives
leaner data subsets, particularly useful for handling the large dataset in
an effective way with a reasonable computational effort.

2.3. Processing and geo-referencing the data

The data has been processed with module 1 (see Fig. 1) of the TEMA
platform (De Gennaro et al., 2016a), to derive the key mobility figures
in the different geographical areas, such as, the share of the fleet in
motion or parked in the day and in the week in each province area, the
average trip distance, trip duration, parking duration, and trip speed
and their related probability distributions.

Being the GPS coordinates of the driving and parking events known,
the whole data can be geo-referenced and visualised on the map of
Europe. In this respect, the data has been dynamically interfaced with
digital maps retrieved from the web (Google Inc., 2013). This interface
is natively built in the data processing platform of TEMA (De Gennaro
et al., 2016a). In order to handle the geo-referenced results, each ana-
lysed area is embedded in an analysis window, defined by the minima
and maxima values of latitude and longitude, appropriately set as user
input to include the targeted area. In this work the whole Europe is
considered as embedded in an analysis window extending from 35.7 to
70.7 degrees of latitude north and from −11.8 to 31.5 degrees of
longitude east resulting in an area of approximately 15.17·106 km2. The
window is divided in squared terrain tiles, concentrating the calculated
variables in the centroid of each tile for rendering purposes. The smaller
the size of the tile, the higher the resolution of the depicted results; a

(a) 

(b)
Fig. 5. Road type share for all the trips (left side) and users (right side) for private vehicles (a) and commercial vehicles (b). Data are not reported for Modena and
Florence because unavailable.
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terrain tile size of 1 km per edge has been considered, resulting in
15,170,989 tiles for the whole analysis window. Plotting the geo–r-
eferenced data it is possible to visualise:

• the map of all the data records regardless of the time;

• a map of the driving patters recorded, cumulative in 24-hours or
rendered in time intervals;

• a map of the records of the parking locations, cumulative in 24-
hours or rendered in time intervals.

The density of the data points can then be integrated in space in
each tile, and used to calculate the daily averaged spatial density over
each tile.

Module 5 of TEMA (Fig. 1) is used to estimate the geo-referenced
gaseous emissions of the vehicles (De Gennaro et al., 2016a). Three
types of emission sources can be calculated: driving emissions, related
to the operation of the internal combustion engine during driving
phases, cold-start emissions, related to the release of hydrocarbons
happening when the vehicle is operated with cold catalyst, and eva-
porative emissions, related to the release of volatile organic compounds
happening when the vehicle is parked. These source analyses can be all
handled by TEMA, resulting in a complete overview of the atmospheric
impact of road vehicles as derived from their real world driving and
parking patterns. Concerning the driving emission sources the grams of
pollutant per km are calculated by considering the yearly fuel con-
sumption statistics in the countries for each fuel type (Unione
Petrolifera, 2008), (IEA, 2014) and the emission factors as per

(European Environmental Agency, 2017), the number of vehicles for
each vehicle category registered in the country and the related total km
driven per year for each vehicle category as per (ACI, 2011),
(EC4MACS, 2016). The classification of vehicles according to their
emission control technologies is made on the basis of the legislation
they comply with (ACI, 2011), (European Environmental Agency,
2017). The calculated average emissions in g/km for each vehicle type
are then scaled up to the province fleet size considering the province
fleet share (Eurostat, 2017), (ACI, 2011), (EC4MACS, 2016), (Croatian
Environmental Agency, 2013), either of private or commercial vehicles
depending on the database.

3. Results

3.1. Mobility results from GPS data versus reference data

Table 2 reports a comparison of mobility data published in different
sources and collected via different types of surveys and interviews in
Europe and USA, as per (Marconi et al., 2004), (EUROSTAT,
1999–2001), (ISFORT, 2008), (ISFORT, 2015), (ACI CENSIS, 2012),
against the mobility results computed from the data presented in
Table 1. The comparison is based on the average number of trips per
day and on the average distance of the trip. For each reference source
the sample size is given if available (i.e. number of households and/or
persons involved in the survey). Table 2 reports also the year during
which the survey took place. The calculated number of trips per day
from the GPS data is slightly higher compared to the average values

(a) 

(b)
Fig. 6. Mean trip speed share for all trips (left side) and users (right side) for private vehicles (a) and commercial vehicles (b).
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derived from survey data, while the average trip distance is in some
cases lower (Modena, Florence and Brussels) and in some others higher
(Amsterdam and Paris). The effect of the different type of surveys un-
dertaken (i.e. geo-coded Computer-Assisted Telephone Interviews, i.e.
CATI, face to face or written survey), could explain this difference. The
GPS data are, in general, more accurate than surveys data, being based
on an accurate sequential sampling of the driving patterns. Survey data

can be instead biased by personal evaluations of the interviewed per-
sons which might underestimate short journeys, viewed as insignificant
and hence possibly omitted. This is likely to decrease the number of
trips per day as well as increase average trip distances being long trips
overrepresented and short trips underrepresented. Moreover the trip
definition as it is intended in surveys can be different respect to the trip
definition assumed in GPS data analysis. In fact a trip is accurately
defined as a sequence of engine status in the databases, while in the
survey data it can be intended as a movement from a starting to an
ending point, independently if one or more short stops occur during the
trip itself.

3.2. In-depth analysis of the mobility results from GPS data

Fig. 2 depicts the share of the fleet parked (top) and in motion
(bottom) in the week from Monday to Sunday. Fig. 2-(a) focuses on
those provinces whose majority of vehicles is classified as private,
whilst Fig. 2-(b) focuses on those provinces whose majority of vehicles
is classified as commercial. Where more than one week is available in
the data, the curve is depicted as averaged on the available weeks. The
top and bottom pictures are complementary, i.e. the sum of the parked
and in-motion profiles for each city equals to 100%. Both of them are
depicted, in order to ease the comprehension of the mobility patterns.
The derived mobility behaviour is similar for all databases of the pri-
vate and commercial vehicles respectively, periodically repeated in the
days of the week. Private vehicles exhibits three traffic peaks from
Monday to Friday, i.e. in the morning (approximately at 7.30), at noon
and in the evening (approximately at 18.30). The peaks are prominent
for Modena and Florence, whilst less visible for Amsterdam, Brussels,
Paris and Luxembourg which are also characterised by lower activity

(a) 

(b)
Fig. 7. Road speed limit share for all the trips (left side) and users (right side) for private vehicles (a) and commercial vehicles (b). Data are not reported for Modena
and Florence because unavailable.

Fig. 8. Map of the data records in Europe.
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levels. The mid peak, in particular, is almost not visible for Paris and
Brussels. These differences can be ascribed to the fact that Amsterdam,
Brussels, Paris and Luxembourg are capital cities, with more use of
public transport services and different professional habits than Modena
and Florence, which allow people to shift towards lower shares of
adoption of private vehicles and different utility patterns. In the
weekend (Saturday and Sunday) the shape of the curves is different,
showing mainly two peaks, approximately at 12.00 and at 19.00. Some
vehicles are in motion during late Saturday night, although values
above 99% of the vehicles are always parked between 1 and 5o’clock in
the morning. The share of the vehicles in motion at the same time never
exceeds 11.7% of the complete fleet for Modena and 10.4% for Flor-
ence, with a mean value of 4.3% for Modena and 4.5% for Florence. It is
observed that Amsterdam shows peak values below 7% while Brussels,
Paris and Luxembourg well below 5% in line with (Gyan, 2016),
(Grolleau, 2015), where it is indicated a percentage of respectively 5%,
17% and 38% for passenger cars, bus and trucks in motion.

Fig. 2-(b) shows the driving behaviour of the commercial vehicles,
which, up to a certain extent, looks similar to those depicted for private
vehicles. In general, a higher share of vehicles is in motion compared to
private vehicles during working days, reaching the 15% peak in Lisbon.
The midday drop in number of vehicles in motion is, in general, less
visible in the majority of the databases, except for Lisbon that presents a
very similar trend to that of Modena and Florence. This suggests that
the vehicles are driven without interruption in the working hours of the
day, starting between 5.00 and 7.00 in the morning (i.e. earlier than
private vehicles) and ending between 14.00 and 18.00. Such behaviour
suggests that most of the sample is made of taxis and delivery vans with
different working schedules. During the weekend, and especially on
Sunday, there is a significant drop of the vehicles in motion, with al-
most no vehicles driving in Vienna on Sunday. The share of parked fleet
is never less than 85% along the hours of the day. Bratislava results to
have a small percentage of vehicles in motion in comparison to the
other areas.

(a)                                                          (b) 

)d()c(

Fig. 9. Averaged density of the driving records per squared kilometre for four aggregated time frame a) from midnight up to 6 a.m. o’clock, b) from 6 a.m. to midday,
c) from midday to 6p.m., d) from 6p.m to mid-night. The plot refers only to the monitored vehicles.
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Table 3 reports the fleet share per intervals of daily travelled dis-
tances. Data are split between private and commercial vehicles.
Modena, Florence and Paris show a very similar trend for the trip dis-
tribution of private vehicles, with approximately 90% of daily trips
being less than 100 km and 110 km respectively. The two Italian pro-
vinces show a very similar driving behaviour with approximately 10%
of the sample exceeding 100 km/day, reducing to 4.7% and 5.3% ex-
ceeding 150 km/day, while more than 50% of the sample travels less
than 40 km/day and 75% less than 60 km/day. Concerning Paris 23% of
the sample exceeds 100 km/day, while 45% travels less than 40 km/
day. Amsterdam, Brussels and Luxembourg show a higher percentage of
shorter daily trips in respect to the previous provinces. In Amsterdam
7.7% of the sample exceeds 100 km/day, reducing to 2.4% exceeding
150 km/day, while 58% sample travels less than 30 km/day and 80%
less than 60 km/day. In Brussels 18% of the sample data exceeds
100 km/day, while 54% travels less than 30 km/day. In Luxembourg
only 2% of the sample exceeds 100 km/day, while 85% drives less than
50 km/day and 62% less than 30 km/day. The different road networks
of the analysed areas, as well as the different mobility demands patterns
and urban area sizes have certainly an influence on the mobility be-
haviour observed in these plots. For commercial vehicles, higher per-
centage of fleet share are observed for longer daily travelled distances,
i.e. ≥150 km, in comparison to private vehicles. In Budapest 52.4% of
the commercial vehicles travel more than 150 km/day and only 33.2%
less than 100 km/day and 16.5% less than 50 km/day. A similar daily
travel distance is found for Ljubljana, Krefeld, Vienna and Warsaw,
where 41.8%, 40.5%, 36.5% and 33.9% of the commercial fleet travels
more than 150 km/day. Bratislava, Athens, Sofia, Lisbon, Zagreb and
Vienna show that more than 50% of the commercial vehicles travel less
than 100 km/day, with the peak of 94.8% in Bratislava, where high
percentages are also found for daily travelled distances less than 50 and
30 km/day. Similar observation can be made for Athens, Sofia and
Warsaw, deducing that these vehicles probably correspond to company
vehicles, rather than taxis or trucks. However, more detailed informa-
tion on the vehicles other than the label described in Section 2.2 is not
available, and additional verifications have to be carried out in this
respect. The values of Table 3 are depicted in form of bar-charts in
Fig. 3-(a) and (b), weighted on the vehicle category share per database

as reported in Table 1 (i.e. private and commercial vehicles) for a term
of comparison.

Table 4 reports the main trip indicators for the analysed data. The
averaged trip has a length between 5 and 20 km for the private vehicles
and length between 10 and 90 km for the commercial vehicles. The
averaged trip duration varies between 10 and 20min for private and
between 20 and 90min for commercial vehicles, while the averaged
parking duration lasts between 2 and 12 h and 24min and 1 h respec-
tively. Trips speed varies between 26 and 54 km/h for private and be-
tween 25 and 65 km/h for commercial vehicles. These values are
average values on the full sample available in each dataset. The cu-
mulative distribution functions of each trip indicator are reported in
Fig. 4-(a) and (b) for private and commercial vehicles.

Figs. 5–7 depict respectively the bar-charts of the road type share
(see legend in Fig. 5-(a) left side), the mean trip speed share and the
road speed limit share for trips and users for both private and com-
mercial vehicles. It is noteworthy that trips are driven mainly on major
roads, i.e. labels from 1 to 2, with equal distribution on secondary and
local roads. Mean trip speeds are mainly between 10 and 50 km/h for
private and up to 80 km/h for commercial vehicles, with speed limits
from of 50 km/h to 130 km/h, i.e. from city driving to motorway, ac-
cording to EU common road prescriptions.

3.3. Geo-referenced results from GPS data

Fig. 8 shows the European map of the cleansed database records,
reporting 1.56 billion red dots. This map is intended to be purely in-
dicative, aiming at visualising the geographical extension of the ana-
lysed databases. Although the data is clearly not exhaustive of the
mobility in the EU, it provides a good coverage of significantly different
areas characterised by different climatic conditions, i.e. from Medi-
terranean to Baltic climate, different levels of urbanisation, i.e. rural
areas, urbanised areas and megalopolis such as Paris, and different
socio-economic conditions. Starting from the southern Europe, it is
possible to notice how southern Italy, Greece, Bulgaria and Portugal
present a good coverage. Southern European data can be used for fo-
cusing the analyses on those phenomena that depends on ambient
temperature, e.g. evaporative emissions as per (De Gennaro et al.,
2016b). Italy presents a good coverage as a whole, i.e. vehicles that
starting from the provinces of Modena and Florence travel across the
country, as well as data across the Alps-Danube area, i.e. Austria,
Croatia and Bulgaria up until the southern Germany and Poland. A good
coverage is also available in the area around Paris, the full Benelux area
and the northern Germany.

Going a step further into the geo-mapping analysis Fig. 9 shows the
density of the daily records of vehicles in motion per squared kilometre
in an analysis windows that focuses on central Europe and aggregated
according to given percentage ranges:

• green dots represent a records density per squared kilometre less
and equal to 10%,

• orange dots represent a records density per squared kilometre in
between 10 and 30%

• dark orange dots represent a records density per squared kilometre
in between 30 and 50%

• red dots represent a records density per squared kilometre in be-
tween 50 and 70%

• dark red dots represent a records density per squared kilometre
higher than 70%.

These density percentage have been derived normalising the
number of records in a given square kilometre on the maximum number
of records per square kilometre within each considered country. Data
are aggregated per time intervals, i.e. from 0.00 up to 6.00 (a), from
6.00 to 12.00 (b), from 12.00 to 18.00 (c) and from 18.00 to 24.00 (d).
The higher density of records is found within the centres of the capitals

Fig. 10. Zoom of the geo-contours of the averaged density of the driving re-
cords per squared kilometre for Paris province from 6a.m. to midday.
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cities, but peaks change with time during the day, with vehicles moving
towards and from periphery in the morning and evening. Fig. 10 depicts
instead a zoom in the area of Paris (6.00–12.00 interval) of the geo–-
contours of the averaged density of the daily records per squared
kilometre, to better appreciate the different shades of colours. The
contours show a peak of 100,000 records per km2 per day (i.e. not
vehicles per day) in some streets in the centre of Paris, gradually de-
creasing while stepping away from the city centre towards the per-
iphery and suburban areas. Similar considerations can be made for the
other cities. The high value of records gives the measure of the pro-
cessing power and capabilities needed to handle such datasets, as well
as the accuracy that can be reached analysing the data.

The data has been further processed with TEMA module 5 (Fig. 1) to
compute the real-world road driving emissions, as described in Section
2.3. The weighted distance-specific CO2 emissions in g/km is derived
considering the vehicle fleet composition of the country, the total km

driven per year (ACI, 2011), (EC4MACS, 2016) and the emission factor
for each vehicle category (European Environmental Agency, 2017).
Table 5 reports the weighted private and commercial fleet emission
factors for CO2 calculated by applying this methodology.

Note that although distance specific emissions from commercial
vehicles are typically four times higher than those from private ve-
hicles, their fleet weighted values results to be lower due to their lower
fleet shares. In order to be plotted, the computed weighted CO2 g/km
values reported in Table 5 are:

• distributed over the geo-referenced driving patterns;

• scaled up to the monitored fleet of the province according to the
shares reported in Table 1;

• integrated in time over the analysis period of one month or one
week depending on the geographical area;

• and finally averaged per day.

Table 5
Fleet-weighted CO2 emission factors in g/km.

Fleet Category Fleet share with respect to the total fleet of the country (PC, LDV,
HDV, BUS, Mopeds, Motorcycles), [%] (ACI, 2011, EC4MACS,
2016).

CO2[g/km]weighted on
fleet composition

Private vehicles Province of Modena gasoline passenger cars 51.3 151
diesel passenger cars 35.9

Province of
Florence

gasoline passenger cars 51.4 163
diesel passenger cars 42.2

The Netherlands gasoline passenger cars 58.1 157
diesel passenger cars 14.9

Belgium gasoline passenger cars 36.8 165
diesel passenger cars 43.9

France gasoline passenger cars 37.3 156
diesel passenger cars 38.5

Luxembourg gasoline passenger cars 39.4 168
diesel passenger cars 42.3

Commercial vehicles Portugal gasoline commercial vehicles, 1.3 84
diesel commercial vehicles, 21.9
diesel HDV 2.7
diesel buses 0.2

Germany gasoline commercial vehicles, 0.4 26
diesel commercial vehicles, 3.4
diesel HDV 1.7
diesel buses 0.2

Poland gasoline commercial vehicles, 4.5 75
diesel commercial vehicles, 7.7
diesel HDV 4.6
diesel buses 0.4

Slovakia gasoline commercial vehicles, 2.1 87
diesel commercial vehicles, 7.2
diesel HDV 7.2
diesel buses 0.4

Austria gasoline commercial vehicles, 0.5 27
diesel commercial vehicles, 4.7
diesel HDV 1.4
diesel buses 0.2

Slovenia gasoline commercial vehicles, 0.6 50
diesel commercial vehicles, 4.2
diesel HDV 4.5
diesel buses 0.2

Croatia gasoline commercial vehicles,
diesel commercial vehicles,

6.9 70

diesel HDV diesel buses 2.0
Hungary gasoline commercial vehicles, 1.3 62

diesel commercial vehicles, 9.5
diesel HDV 3.6
diesel buses 0.4

Bulgaria gasoline commercial vehicles, 2.6 65
diesel commercial vehicles, 3.2
diesel HDV 3.7
diesel buses 1.3

Greece gasoline commercial vehicles, 7.8 52
diesel commercial vehicles, 2.7
diesel HDV 2.3
diesel buses 0.2
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Fig. 11. Geo-referenced European CO2 real-world driving source emissions.
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Fig. 11 depicts the results of this procedure, showing emission
sources aggregated from private and commercial vehicles distributed
over the major road of the analysed areas, with peak values above
500 tons/km2/day in Paris, Modena and Florence. The average value
per road results to be between approximately one-third and one-fifth of
the peak value. Sources are higher around city centres, gradually de-
creasing at the country borders, consistently with the driving data
distribution. The results refer to the monitored urban fleet share of the
given province; a low number of monitored vehicles in the database
will result in a low emission source value for square kilometre and day.
The vehicles driving through the geographical area but not registered in
the country are not considered in the calculation.

It is noteworthy that most of the capital cities show the highest
value in proximity of their centre, except for Amsterdam probably due
to the high use of bikes in the city centre (Eurostat, 2004) and Brussels
that shows the highest emissions on the ring around the city. In Vienna
the highest emissions are found on the motorway arteries running
around the city and heading towards Graz; however this distribution is
due to the data, mainly referred to commercial vehicles. The density of
the vehicles in motion across a country varies from country to country
and within the country itself generating higher values of CO2 per km
only where the concentration of the sources is high. In order to properly
compare the emission source plots among the considered areas, a nor-
malisation with respect to a reference number of vehicles needs to be
made. Beyond CO2 other emissions and pollutants, such as carbon
monoxide, nitrogen oxide, hydrocarbons and particulate matter, can be
depicted in the same way.

3.4. Ambient temperature and mobility

A target analysis has been carried out to assess the vehicles in
motion in relation to the seasonal variation of the temperature. To this
purpose another set of data referred to Brussels has been considered,
recorded during a cold week in January 2017 (Be-Mobile, Traffic and
Mobility, 2016) (Universalis, 2016), the coldest month of that year. The
set refers to 95,383 monitored vehicles and 16.5 million km and 396
million data records. The 90.4% of the data refer to private vehicles.

Fig. 12 shows the temperature variations for the two sets from
Brussels province for March 2015 and January 2017, together with the
share of vehicle in motion in the monitored weeks. It is observed that a
higher percentage of vehicles in motion (approximately double) is ob-
served for January in respect to March. This might be related to winter
season travelling. Analysing further these results it is possible to derive
the distribution of vehicles in motion in function of the temperature
experienced in the monitored weeks as shown in Fig. 12c) and d). More
than 15% of the monitored vehicles experienced a temperature of 6 °C
in March and −1 °C in January, while up to 65% of the monitored
vehicles experienced a temperature below 0 °C in January and 57%
above 5 °C in March. These results can support target analyses for
transport policy assessment, similarly to the study carried out by the
authors for the evaporative emissions assessment from parked vehicles
in the summer season (De Gennaro et al., 2016b) or sun irradiations on
parked photovoltaic roof vehicles for eco–innovation technologies as-
sessments (Lodi et al., 2018). These analyses can also support the as-
sessment of the impact of geographical and temperature differences on
electric vehicle driving range due to cabin conditioning energy

a)                                                                              b) 

c)                                                                       d) 
Fig. 12. a) Temperature, b) share of vehicles in motion, c) share of vehicles in motion for experienced ambient temperature in March 2015 and d) share of vehicles in
motion for experienced ambient temperature in January 2017.
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consumption and road gradient. The increase in the energy consump-
tion and related driving range reduction due to the use of the Heating,
Venting and Air Conditioning (HVAC) system vary in fact with the
ambient temperature; approximately -60% driving range reduction at
−10 °C, −42% at 0 °C, −27% at 10 °C, −5% at 20 °C and −22% at
40 °C [58]. This implies possible differences among the results for dif-
ferent geographic areas in relation to their typical seasonal tempera-
tures. Concerning conventional fuel vehicles, the use of the HVAC
system can increase the fuel consumption up to 20% (Government of
Canada, Natural Resources Canada, 2016) depending on the vehicle’s
interior size, the outdoor temperature and other operating conditions.
Analysing Europe as a whole, a different temperature can be observed
in the weeks in which the data has been sampled. For instance, in the
first week of March 2015 the average minimum temperature was
around 0 °C (World Temperatures, 2017) in Amsterdam, Brussels and
Paris, while in the same week in Athens the average minimum tem-
perature was 10 °C. Moreover, the average maximum temperature was
9 °C in Amsterdam, 14 °C in Brussels, 12 °C in Paris, 16 °C in Athens,
thus suggesting a possible different behaviour in the use of the HVAC
system in these areas that can be further explored to assess the impact
on the energy and fuel consumption of different vehicle technologies.

4. Conclusions and possible future applications of big data in
support of transport policies

This work presents the earliest results achieved by using TEMA for
processing European-wide mobility data. In respect to previous studies
from the authors which focused on the Italian provinces of Modena and
Florence, here fourteen additional regions have been included in order
to extend the data coverage to a continental scale. These are:
Amsterdam (NL), Brussels (BE), Luxembourg (LU), Paris (FR), Lisbon
(PT), Krefeld (DE), Warsaw (PL), Bratislava (SK), Vienna (AT),
Ljubljana (SI), Zagreb (HR), Budapest (HU), Sofia (BG) and Athens
(GR). The complete dataset accounts for approximately 2.57 billion
records, 139 million driven kilometres and 632,186 monitored vehicles,
of which 506,105 associated to private vehicles, and the remaining
126,081 associated to commercial vehicles. The paper presents the data
as a whole, focusing on the efforts needed to pre-process and aggregate
it in a usable format.

Mobility results are presented per each database and compared with
reference statistics, deriving average values and cumulative distribu-
tions for trip distance, trip duration, parking duration and trip speed.
The analysis shows that the share of the private fleet in motion at the
same time never exceeds 12%, with some areas with less than 5% ve-
hicles in motion, while the commercial vehicles show in general a
higher share of vehicles in motion in respect to private vehicles, up to
15%. The data has been rendered on the European map for visualising
its geographical coverage and then represented as plots of the spatial
density of the records. Module 5 of TEMA has been run to depict the
geo-referenced real-world emission sources associated to the driving
data, presenting a possible application of the platform on such vast
data.

The large scale European mobility analysis presented in this work
could support a critical analysis of the major dynamic changes that
could affect the demand for travel and related transport systems in
future and depict opportunities to shape the next generation of trans-
port policies towards a zero emission society. Crossing all the in-
formation about the mobility needs, population density and geo-dis-
tribution and urban orography dedicated multi–modal interconnected
services could be defined tailored on people mobility, supporting a
transition towards mobility as a service. Crossed border travel data
analyses could be useful to support the deployment of e-corridor for
trucks or other innovative technologies for freight transport but also for
passenger electric vehicles.

The presented work constitutes a first attempt for a continental scale
pilot study of travel behaviour in Europe, with the aim of showing how

the presented data and processing methodologies allows for un-
precedented opportunities to shape the next generation of transport
policies to meet the existing and future challenges of the transport
systems.
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